
32-Bit Fully Pipelined MIPS
Rachel Nash and Jack Thompson

October 23, 2017

1. Introduction
 This is an implementation of a subset of the MIPS32 architecture in Logisim

that supports arithmetic/logic instructions, jumps and branches with one delay slot,

and little endian memory loads/stores. It uses forwarding and stalling to avoid

hazards. The five stages of the circuit are Instruction Fetch, Instruction Decode,

Execute, Memory, and Write Back.

2. Overview

 Pipeline registers separate every stage so that information can only go

through one stage per clock cycle.

 IF: Instruction Fetch
• Accesses the current instruction from memory
• PC (stored in a register) is incremented by 4
• Muxes check if there is a branch, jump, or stall

ID: Instruction Decode/Register File Read
• Instruction is decoded and control logic is passed on. Registers are

read on falling clock edge
• Immediate numbers are sign-extended
• Load/use hazards are detected

EX: Execute/Address Calculated
• ALU computes the required operation for the instruction and outputs

the result
• Forwarding logic for most hazards and branch/jump address

calculation
MEM: Data Memory Access

• If the instruction accesses memory, the data is read or written to
memory

• Otherwise, ALU computation passes through
WB: Write back

• Determines which data to write to a register (the data from Memory or
from Execute stage)

• Writes this data to the designated register on rising clock edge

3. Instruction Fetch (IF)

 In this first stage, the PC (stored in a register) is used to fetch the next 32-bit

instruction in the program ROM, which is then passed on. The PC prepares to read

the next instruction at the next rising edge of the clock by adding 4. If there is a

taken branch or a jump, we zap the instruction in IFID to create a nop and

increment the PC accordingly. If there is a stall, we disable write enable to IFID

and prevent PC from updating to PC+4.

4. Instruction Decode (ID)

 This stage takes the 32-bit instruction from IF and breaks it up to find the

read registers, destination register, shift amount, op code, and function code,

depending on the instruction type. It reads from rA and rB in the register file and

passes everything else through to the execute stage. Instructions are decoded and

control bits are assigned. LScontrol is a 4-bit number that contains information

about loads and stores. The sub-circuit loadUseHaz determines if there needs to be

a stall, and if so, it zaps IDEX, prevents writing to IFID and stops PC from

updating.

 4.1 opDecode

 This sub-circuit contains all of the logic to decode instructions and assign

control bits. The outputs of this subcircuit are described in the table below.

Output	 Description	
ALUsrc	 1	if	R-type,	0	if	I-type,	used	as	control	later	

ALUop	 4-bit	op	code	to	go	into	ALU	

isSLT	 1	if	any	type	of	'set	less	than'	instruction	

isU	 1	if	SLT	unsigned	

isVar	 1	if	the	shift	is	variable,	0	if	not	variable	

RegWrite	 1	if	writing	to	register	in	the	register	file,	0	if	instruction	not	
supported	yet	

isMove	 1	if	a	move	instruction	

isLUI	 1	if	LUI	instruction	

LScontrol	 bit3:	1	if	a	load	or	store,	bit	2:	1	if	store,	bit1:	1	if	full	word	(not	
byte),	bit0:	1	if	signed	

One of the most important controls is ALUsrc, which is 1 if the instruction is

an R-type and 0 if it is I-type.

Logic is implemented to detect correspondences between the instructions

and the 4-bit ALU operations for said instructions, producing the ALUop output.

For I-type instructions, this control input comes from the opcode field of the

instruction. For R-type instructions, this control input comes from the function

field of the instruction. R-type and I-type instructions are differentiated by the

presence of 000000 in the opcode field. The 1-bit control line ALUSrc

differentiates this, and is used in a mux to determine the 2nd ALU input.

In many cases, various bits in these 6-bit fields correspond to the same ALU

operation. The table below shows the ALU operation inputs compared to the

instructions that use these operations.

ALU Operation Function R-type (func
field)

I-type (opcode
field)

000x Shift left SLL: 000000
SLLV: 000100
LUI: 001111

001x Add ADDU: 100001 ADDIU: 001001
0100 Shift right

logical
SRL: 000010
SRLV: 000110

0101 Shift right arith. SRA: 000011
SRAV: 000111

011x Subtract SUBU: 100011
1000 And AND: 100100 ANDI: 001100
1010 Or OR: 100101 ORI: 001101
1100 Xor XOR: 100110 XORI: 001110

For R-type instructions starting with a 1 in their function field, bits 0-3 in the

function field correspond to bits 1-3 in the ALU operation input. For all I-type

instructions, the same rule applies with bits 28-26 in the opcode field. This is

displayed in bold on the table. A 0 was appended to these corresponding bits in the

instruction to produce the ALU operation.

One discrepancy from this trend is the shift instructions. However, there are

some trends for these functions as well:

 Bit 29: 1=LUI (shift 16 bits) 0=other shifts

Bit 30: 1=variable shift amount, 0=shift amount from shamt field

Bit 31: 1=right shift, 0=left shift

Bit 32: 1=arithmetic, 0=logical,

Additional logic is implemented for move instructions, which use the eq and

ne operations of the ALU.

Combining these values in a control circuit allows us to control the ALU to

perform the desired operation.

The “set less than” functions do not access the ALU, but instead are

compared via either a signed or unsigned comparator. So, an isSLT control signal

is extracted from these instructions as well as isU to determine which comparator

to use.

1110 Nor NOR: 100111
1001 Eq MOVZ: 001010
1011 Ne MOVN: 001011
1101 Gtz
1111 Lez
 SLT: 101010

SLTU: 101011
SLTI: 001010
SLTIU: 001011

 4.2 loadUseHaz

 This simple sub-circuit determines if there is a load-use hazard (if the

instruction currently in execute stage is going to load a value from memory that is

needed for the instruction currently in decode). When isLoadUse is 1, the

instruction in decode is stalled once and a nop bubble is passed through to the next

stage.

5. Execute (EX)

 This stage performs any necessary calculations, primarily using the ALU.

We pass in the ALU opcode determined in opDecode, and either put target register

values into the ALU, load an immediate into the upper 16 bits, or run register

values through either a signed or unsigned comparator (for SLT). For moves, a 0 is

sign-extended to 32 bits and put in the ALU to be compared to rt and regWrite is

turned off if the condition is not met. The jumpDecode and branchCalc sub-circuits

find the address the PC is set to for these instructions.

 A forwarding sub-circuit (described in detail next) determines if there is a

hazard requiring values to be forwarded from MEM or WB. Control of forwardA

is shown below and forwardB is the same. Two muxes in the main EX stage are

used to choose between 3 possible inputs.

forwardA A input in ALU

00 rs

01 forward from WB

10 forward from MEM

5.1 Forward

 Within this sub-circuit of Execute, the destination registers in the Memory

and Write Back stage are compared to registers being used in current operations to

see if there are any hazards. We use a simple equals sub-circuit to check if they are

the same. Outputs are used as control signals to choose ALU inputs. The output

forwardA is for the A input of ALU and forwardB is for the B input. The logic is

as follows:

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) and (EX/MEM.RegisterRd == ID
/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) and (EX/MEM.RegisterRd == ID
/EX.RegisterRt)) ForwardB = 10

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)

 and (EX/MEM.RegisterRd == ID/EX.RegisterRs))

 and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

 ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)

 and (EX/MEM.RegisterRd == ID/EX.RegisterRt))

 and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

 ForwardB = 01

5.1.1 Equals

Shown is the simple subcircuit to compare 2 registers in order to detect a

data hazard.

5.2 jumpDecode

This sub-circuit works with jump instructions. It outputs the address to jump

to (jAddr), decides whether or not a return address is saved in a register (with

RegWrite), and determines if the instruction is a jump (with isJump).

5.2 branchCalc

If there is a branch instruction, we use comparators to check if it is taken and

we find the inputs to the ALU which are PC+4 and the 16-bit signed offset shifted

left 2.

6. Memory

 The LScontrol that has been passed through (see opDecode sub-circuit) can

now be used to either load or store in memory. For accessing bytes, the address

input is shifted right 2 to find the word address and bits 0 and 1 from the original

input (I will call these the byteControl) are used to select the byte using a decoder.

Full word access turns every bit of RAM's sel input on (selecting all bytes). Then

after going through RAM, for a load, muxes choose between the full word value

(LW) and a sign-extended (LB) or zero-extended byte (LBU). A splitter and mux

determines which byte is put through using the same byteControl from before.

7. Write Back (WB)

 The simplest stage, write back writes either the data from memory (M) or

output of the ALU (C) to the register file in the ID stage on the falling edge of the

clock if RegWrite is on.

8. Pipeline Registers (Example: IF/ID)

 This is an example of one of our pipeline registers, IF/ID. The others

(ID/EX, EX/MEM, and MEM/WB) are all structurally similar, with different

inputs and outputs, but they all write useful values to registers under control of the

clock. IF/ID is slightly different because it can stall and zap instructions. When a

stall is detected, write enable to IF/ID pipeline registers is disabled in order to

prevent the instruction from being passed forward. When we detect that we need to

perform a zap, we set the instruction to all 0s using a mux.

A table explaining each value in the registers is here for clarity.
	

ID/EX EX/MEM

zap 1 if there is a stall, causes nop to be

passed through

 bran 1 branch/jump is taken

RegWrite 1 if writing to register RegWrite 1 if writing to register

PC4 Value of PC of instruction +4 PC4 PC+4

rs value in register designated by rs field

of instruction

 C result from execute

rt value in register designated by rt field of

instruction

 regDest destination register

insn 32-bit instruction LScontrol 4-bit control signal for

loads/stores

imm32 32-bit immediate rt the value in rt

regDest destination register MEM/WB

shamt shift amount RegWrite 1 if writing to register, 0 if

instruction not supported yet

ALUop 4 bit op for ALU C result from execute

ALUsrc 1 if R-type, 0 if I-type M result from memory

isMove 1 if move instr regDest destination register

isSLT 1 if any type of set less than isL 1 if a load

isU 1 if SLT is unsigned

isVar 1 if Shift left variable

rsAddr the address of the rs register

rtAddr the address of the rt register

LScontrol 4-bit control signal for loads/stores

10. Testing
 We manually generated assembly code tests for our mini-MIPS. We started

with testing every instruction type in Table A with no dependencies. Then we

tested our Fibonacci Iterative, Recursive, and Memoized programs. We tested all

branches when they are both taken and not taken, all load and store instructions

with different offsets, and all jump instructions going forwards and backwards in

the program. Then, we checked the following hazards: EX/MEM, MEM/WB,

Double, Triple, Single False, Double False, Triple False, 1-cycle False, 2-cycle

False, 3-cycle False, and Load-Use Hazard.

