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1. Introduction 
 This is an implementation of a subset of the MIPS32 architecture in Logisim 

that supports arithmetic/logic instructions, jumps and branches with one delay slot, 

and little endian memory loads/stores. It uses forwarding and stalling to avoid 

hazards. The five stages of the circuit are Instruction Fetch, Instruction Decode, 

Execute, Memory, and Write Back. 

2. Overview 

 
 Pipeline registers separate every stage so that information can only go 

through one stage per clock cycle.  

 IF: Instruction Fetch 
• Accesses the current instruction from memory 
• PC (stored in a register) is incremented by 4 
• Muxes check if there is a branch, jump, or stall 

ID: Instruction Decode/Register File Read 
• Instruction is decoded and control logic is passed on. Registers are 

read on falling clock edge 
• Immediate numbers are sign-extended 
• Load/use hazards are detected 



EX: Execute/Address Calculated 
• ALU computes the required operation for the instruction and outputs 

the result 
• Forwarding logic for most hazards and branch/jump address 

calculation 
MEM: Data Memory Access 

• If the instruction accesses memory, the data is read or written to 
memory  

• Otherwise, ALU computation passes through 
WB: Write back 

• Determines which data to write to a register (the data from Memory or 
from Execute stage)  

• Writes this data to the designated register on rising clock edge 
 

3. Instruction Fetch (IF) 

 



 In this first stage, the PC (stored in a register) is used to fetch the next 32-bit 

instruction in the program ROM, which is then passed on. The PC prepares to read 

the next instruction at the next rising edge of the clock by adding 4. If there is a 

taken branch or a jump, we zap the instruction in IFID to create a nop and 

increment the PC accordingly. If there is a stall, we disable write enable to IFID 

and prevent PC from updating to PC+4. 

 

4. Instruction Decode (ID) 

 
 This stage takes the 32-bit instruction from IF and breaks it up to find the 

read registers, destination register, shift amount, op code, and function code, 

depending on the instruction type. It reads from rA and rB in the register file and 

passes everything else through to the execute stage. Instructions are decoded and 

control bits are assigned. LScontrol is a 4-bit number that contains information 



about loads and stores. The sub-circuit loadUseHaz determines if there needs to be 

a stall, and if so, it zaps IDEX, prevents writing to IFID and stops PC from 

updating. 

 

 4.1 opDecode 

 
 This sub-circuit contains all of the logic to decode instructions and assign 

control bits. The outputs of this subcircuit are described in the table below. 

Output	 Description	
ALUsrc	 1	if	R-type,	0	if	I-type,	used	as	control	later	

ALUop	 4-bit	op	code	to	go	into	ALU	

isSLT	 1	if	any	type	of	'set	less	than'	instruction	

isU	 1	if	SLT	unsigned	

isVar	 1	if	the	shift	is	variable,	0	if	not	variable	



RegWrite	 1	if	writing	to	register	in	the	register	file,	0	if	instruction	not	
supported	yet	

isMove	 1	if	a	move	instruction	

isLUI	 1	if	LUI	instruction	

LScontrol	 bit3:	1	if	a	load	or	store,	bit	2:	1	if	store,	bit1:	1	if	full	word	(not	
byte),	bit0:	1	if	signed	

 

One of the most important controls is ALUsrc, which is 1 if the instruction is 

an R-type and 0 if it is I-type. 

Logic is implemented to detect correspondences between the instructions 

and the 4-bit ALU operations for said instructions, producing the ALUop output. 

For I-type instructions, this control input comes from the opcode field of the 

instruction. For R-type instructions, this control input comes from the function 

field of the instruction. R-type and I-type instructions are differentiated by the 

presence of 000000 in the opcode field. The 1-bit control line ALUSrc 

differentiates this, and is used in a mux to determine the 2nd ALU input. 

In many cases, various bits in these 6-bit fields correspond to the same ALU 

operation. The table below shows the ALU operation inputs compared to the 

instructions that use these operations. 

ALU Operation Function R-type (func 
field) 

I-type (opcode 
field) 

000x Shift left SLL: 000000 
SLLV: 000100 
LUI: 001111 

 

001x Add ADDU: 100001 ADDIU: 001001 
0100 Shift right 

logical 
SRL: 000010 
SRLV: 000110 

 

0101 Shift right arith. SRA: 000011 
SRAV: 000111 

 

011x Subtract SUBU: 100011  
1000 And AND: 100100 ANDI: 001100 
1010 Or OR: 100101 ORI: 001101 
1100 Xor XOR: 100110 XORI: 001110 



 

 

 

 

For R-type instructions starting with a 1 in their function field, bits 0-3 in the 

function field correspond to bits 1-3 in the ALU operation input. For all I-type 

instructions, the same rule applies with bits 28-26 in the opcode field. This is 

displayed in bold on the table. A 0 was appended to these corresponding bits in the 

instruction to produce the ALU operation. 

One discrepancy from this trend is the shift instructions. However, there are 

some trends for these functions as well: 

 Bit 29: 1=LUI (shift 16 bits) 0=other shifts 

Bit 30: 1=variable shift amount, 0=shift amount from shamt field 

Bit 31: 1=right shift, 0=left shift 

Bit 32: 1=arithmetic, 0=logical, 

Additional logic is implemented for move instructions, which use the eq and 

ne operations of the ALU. 

Combining these values in a control circuit allows us to control the ALU to 

perform the desired operation. 

The “set less than” functions do not access the ALU, but instead are 

compared via either a signed or unsigned comparator. So, an isSLT control signal 

is extracted from these instructions as well as isU to determine which comparator 

to use. 

1110 Nor NOR: 100111  
1001 Eq MOVZ: 001010  
1011 Ne MOVN: 001011  
1101 Gtz   
1111 Lez   
  SLT: 101010 

SLTU: 101011 
SLTI: 001010 
SLTIU: 001011 



 4.2 loadUseHaz

 
 This simple sub-circuit determines if there is a load-use hazard (if the 

instruction currently in execute stage is going to load a value from memory that is 

needed for the instruction currently in decode). When isLoadUse is 1, the 

instruction in decode is stalled once and a nop bubble is passed through to the next 

stage. 

 

5. Execute (EX) 



 
 This stage performs any necessary calculations, primarily using the ALU. 

We pass in the ALU opcode determined in opDecode, and either put target register 

values into the ALU, load an immediate into the upper 16 bits, or run register 

values through either a signed or unsigned comparator (for SLT). For moves, a 0 is 

sign-extended to 32 bits and put in the ALU to be compared to rt and regWrite is 

turned off if the condition is not met. The jumpDecode and branchCalc sub-circuits 

find the address the PC is set to for these instructions. 

 A forwarding sub-circuit (described in detail next) determines if there is a 

hazard requiring values to be forwarded from MEM or WB. Control of forwardA 

is shown below and forwardB is the same. Two muxes in the main EX stage are 

used to choose between 3 possible inputs. 

 

 

 

forwardA A input in ALU 



00 rs 

01 forward from WB 

10 forward from MEM 

 

5.1 Forward 

 
 Within this sub-circuit of Execute, the destination registers in the Memory 

and Write Back stage are compared to registers being used in current operations to 

see if there are any hazards. We use a simple equals sub-circuit to check if they are 

the same. Outputs are used as control signals to choose ALU inputs. The output 

forwardA is for the A input of ALU and forwardB is for the B input. The logic is 

as follows: 

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) and (EX/MEM.RegisterRd == ID
/EX.RegisterRs)) ForwardA = 10 

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) and (EX/MEM.RegisterRd == ID
/EX.RegisterRt)) ForwardB = 10 

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0) 

  and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) 

    and (EX/MEM.RegisterRd == ID/EX.RegisterRs)) 



  and (MEM/WB.RegisterRd == ID/EX.RegisterRs)) 

    ForwardA = 01 

 

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0) 

  and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) 

    and (EX/MEM.RegisterRd == ID/EX.RegisterRt)) 

  and (MEM/WB.RegisterRd == ID/EX.RegisterRt)) 

    ForwardB = 01 

5.1.1 Equals  

 
Shown is the simple subcircuit to compare 2 registers in order to detect a 

data hazard. 

5.2 jumpDecode 

 



This sub-circuit works with jump instructions. It outputs the address to jump 

to (jAddr), decides whether or not a return address is saved in a register (with 

RegWrite), and determines if the instruction is a jump (with isJump). 

 

5.2 branchCalc 

 
If there is a branch instruction, we use comparators to check if it is taken and 

we find the inputs to the ALU which are PC+4 and the 16-bit signed offset shifted 

left 2. 

 

6. Memory 



 
 The LScontrol that has been passed through (see opDecode sub-circuit) can 

now be used to either load or store in memory. For accessing bytes, the address 

input is shifted right 2 to find the word address and bits 0 and 1 from the original 

input (I will call these the byteControl) are used to select the byte using a decoder. 

Full word access turns every bit of RAM's sel input on (selecting all bytes). Then 

after going through RAM, for a load, muxes choose between the full word value 

(LW) and a sign-extended (LB) or zero-extended byte (LBU). A splitter and mux 

determines which byte is put through using the same byteControl from before. 

 

7. Write Back (WB) 



 
 The simplest stage, write back writes either the data from memory (M) or 

output of the ALU (C) to the register file in the ID stage on the falling edge of the 

clock if RegWrite is on.  

8. Pipeline Registers (Example: IF/ID) 

 



 This is an example of one of our pipeline registers, IF/ID. The others 

(ID/EX, EX/MEM, and MEM/WB) are all structurally similar, with different 

inputs and outputs, but they all write useful values to registers under control of the 

clock. IF/ID is slightly different because it can stall and zap instructions. When a 

stall is detected, write enable to IF/ID pipeline registers is disabled in order to 

prevent the instruction from being passed forward. When we detect that we need to 

perform a zap, we set the instruction to all 0s using a mux. 

 

A table explaining each value in the registers is here for clarity. 
	

 

ID/EX   EX/MEM  

zap 1 if there is a stall, causes nop to be 

passed through 

 bran 1 branch/jump is taken 

RegWrite 1 if writing to register  RegWrite 1 if writing to register 

PC4 Value of PC of instruction +4  PC4 PC+4 

rs value in register designated by rs field 

of instruction 

 C result from execute 

rt value in register designated by rt field of 

instruction 

 regDest destination register 

insn 32-bit instruction  LScontrol 4-bit control signal for 

loads/stores 

imm32 32-bit immediate  rt the value in rt 

regDest destination register  MEM/WB  

shamt shift amount  RegWrite 1 if writing to register, 0 if 

instruction not supported yet 

ALUop 4 bit op for ALU  C result from execute 

ALUsrc 1 if R-type, 0 if I-type  M result from memory 

isMove 1 if move instr  regDest destination register 

isSLT 1 if any type of set less than  isL 1 if a load 

isU 1 if SLT is unsigned    



isVar 1 if Shift left variable    

rsAddr the address of the rs register    

rtAddr the address of the rt register    

LScontrol 4-bit control signal for loads/stores    

 

 

10. Testing 
 We manually generated assembly code tests for our mini-MIPS. We started 

with testing every instruction type in Table A with no dependencies. Then we 

tested our Fibonacci Iterative, Recursive, and Memoized programs. We tested all 

branches when they are both taken and not taken, all load and store instructions 

with different offsets, and all jump instructions going forwards and backwards in 

the program. Then, we checked the following hazards: EX/MEM, MEM/WB, 

Double, Triple, Single False, Double False, Triple False, 1-cycle False, 2-cycle 

False, 3-cycle False, and Load-Use Hazard. 


